Instruction Manual

Tektronix

TMS 220 MCF5202/03 Microprocessor Support 070-9956-00

Warning

The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries prior to performing service. Copyright © Tektronix, Inc. All rights reserved. Licensed software products are owned by Tektronix or its suppliers and are protected by United States copyright laws and international treaty provisions.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, or subparagraphs (c)(1) and (2) of the Commercial Computer Software – Restricted Rights clause at FAR 52.227-19, as applicable.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes that in all previously published material. Specifications and price change privileges reserved.

Printed in the U.S.A.

Tektronix, Inc., P.O. Box 1000, Wilsonville, OR 97070-1000

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

WARRANTY

Tektronix warrants that the media on which this software product is furnished and the encoding of the programs on the media will be free from defects in materials and workmanship for a period of three (3) months from the date of shipment. If a medium or encoding proves defective during the warranty period, Tektronix will provide a replacement in exchange for the defective medium. Except as to the media on which this software product is furnished, this software product is provided "as is" without warranty of any kind, either express or implied. Tektronix does not warrant that the functions contained in this software product will meet Customer's requirements or that the operation of the programs will be uninterrupted or error-free.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period. If Tektronix is unable to provide a replacement that is free from defects in materials and workmanship within a reasonable time thereafter, Customer may terminate the license for this software product and return this software product and any associated materials for credit or refund.

THIS WARRANTY IS GIVEN BY TEKTRONIX IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO REPLACE DEFECTIVE MEDIA OR REFUND CUSTOMER'S PAYMENT IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Table of Contents

	General Safety Summary	v
	Service Safety Summary	vii
	Preface: Microprocessor Support Documentation Manual Conventions Logic Analyzer Documentation Contacting Tektronix	ix ix x x
Getting Started		
	Support Description Logic Analyzer Software Compatibility Logic Analyzer Configuration Requirements and Restrictions Connecting to a System Under Test With A Probe Adapter Removing the Probe Adapter from the SUT Connecting to a System Under Test Without A Probe Adapter Channel Assignments CPU To Mictor Connections	$1-1 \\ 1-1 \\ 1-1 \\ 1-2 \\ 1-5 \\ 1-6 \\ 1-7 \\ 1-11$
Operating Basics		
	Setting Up the Support	2–1 2–1 2–1 2–2 2–3 2–3
	Acquiring and Viewing Disassembled DataAcquiring DataAcquiring DataViewing Disassembled DataHardware Display FormatSoftware Display FormatControl Flow Display FormatSubroutine Display FormatSubroutine Display FormatChanging How Data is DisplayedOptional Display SelectionsMarking CyclesDisplaying Exception VectorsViewing an Example of Disassembled Data	2–7 2–7 2–8 2–10 2–10 2–11 2–11 2–12 2–12 2–13 2–14

Specifications

	Probe Adapter Description	3–1 3–1
Maintenance		
	Replacing Signal Leads	4–1
Replaceable Elect	rical Parts	
	Parts Ordering InformationUsing the Replaceable Electrical Parts List	5–1 5–1
	Diagrams and Circuit Board IllustrationsSymbolsComponent ValuesGraphic Items and Special Symbols Used in This ManualComponent Locator Diagrams	5 5 5 5 5
Replaceable Mech	anical Parts	
	Parts Ordering Information	6–1

Using the Replaceable Mechanical Parts List

Index

6–1

List of Figures

Figure 1–1: Connecting the test clip to the probe adapter	1–3
Figure 1–2: Connecting P6434 probes to the probe adapter	1–4
Figure 1–3: Placing the probe adapter onto the SUT	1–5
Figure 2–1: MCF5202/03 bus timing	2–2
Figure 2–2: Hardware display format	2–9
Figure 3–1: Dimensions of the probe adapter	3–3
Figure 3–2: Dimensions of the test clip	3–3

List of Tables

Table 1–1: Address group channel assignments	1–7
Table 1–2: Data group channel assignments	1–8
Table 1–3: Control group channel assignments	1–9
Table 1–4: DataSize group channel assignments	1–10
Table 1–5: Intr group channel assignments	1–10
Table 1–6: Misc group channel assignments	1–10
Table 1–7: Test group channel assignments	1–11
Table 1–8: Clock channel assignments	1–11
Table 1–9: CPU to Mictor connections for Mictor A pins	1–12
Table 1–10: CPU to Mictor connections for Mictor C pins	1–13
Table 2–1: Control group symbol table definitions	2–3
Table 2–2: DataSize group symbol table definitions	2–4
Table 2–3: Intr group symbol table definitions	2–5
Table 2–4: Meaning of special characters in the display	2–7
Table 2–5: Cycle type definitions	2–8
Table 2–6: Exception vectors	2–13
Table 3–1: Electrical specifications	3–1
Table 3–2: Environmental specifications	3–2

Table of Contents

General Safety Summary

Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. To avoid potential hazards, use this product only as specified.

Only qualified personnel should perform service procedures.

While using this product, you may need to access other parts of the system. Read the *General Safety Summary* in other system manuals for warnings and cautions related to operating the system.

To Avoid Fire or
Personal InjuryConnect and Disconnect Properly. Do not connect or disconnect probes or test
leads while they are connected to a voltage source.

Ground the Product. This product is indirectly grounded through the grounding conductor of the mainframe power cord. To avoid electric shock, the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product, ensure that the product is properly grounded.

Observe All Terminal Ratings. To avoid fire or shock hazard, observe all ratings and marking on the product. Consult the product manual for further ratings information before making connections to the product.

Do Not Operate Without Covers. Do not operate this product with covers or panels removed.

Avoid Exposed Circuitry. Do not touch exposed connections and components when power is present.

Do Not Operate With Suspected Failures. If you suspect there is damage to this product, have it inspected by qualified service personnel.

Do Not Operate in Wet/Damp Conditions.

Do Not Operate in an Explosive Atmosphere.

Keep Product Surfaces Clean and Dry.

Provide Proper Ventilation. Refer to the manual's installation instructions for details on installing the product so it has proper ventilation.

Symbols and Terms

WARNING. Warning statements identify conditions or practices that could result

CAUTION. Caution statements identify conditions or practices that could result in damage to this product or other property.

Terms on the Product. These terms may appear on the product:

Terms in this Manual. These terms may appear in this manual:

DANGER indicates an injury hazard immediately accessible as you read the marking.

WARNING indicates an injury hazard not immediately accessible as you read the marking.

CAUTION indicates a hazard to property including the product.

Symbols on the Product. The following symbols may appear on the product:

in injury or loss of life.

WARNING High Voltage

Protective Ground (Earth) Terminal

CAUTION Refer to Manual

Double Insulated

Service Safety Summary

Only qualified personnel should perform service procedures. Read this *Service Safety Summary* and the *General Safety Summary* before performing any service procedures.

Do Not Service Alone. Do not perform internal service or adjustments of this product unless another person capable of rendering first aid and resuscitation is present.

Disconnect Power. To avoid electric shock, disconnect the main power by means of the power cord or, if provided, the power switch.

Use Care When Servicing With Power On. Dangerous voltages or currents may exist in this product. Disconnect power, remove battery (if applicable), and disconnect test leads before removing protective panels, soldering, or replacing components.

To avoid electric shock, do not touch exposed connections.

Preface: Microprocessor Support Documentation

This instruction manual contains specific information about the TMS 220 MCF5202/03 microprocessor support package and is part of a set of information on how to operate this product on compatible Tektronix logic analyzers.

If you are familiar with operating microprocessor support packages on the logic analyzer for which the TMS 220 MCF5202/03 support was purchased, you will probably only need this instruction manual to set up and run the support.

If you are not familiar with operating microprocessor support packages, you will need to supplement this instruction manual with information on basic operations to set up and run the support.

Information on basic operations of microprocessor support packages is included with each product. Each logic analyzer has basic information that describes how to perform tasks common to support packages on that platform. This information can be in the form of online help, an installation manual, or a user manual.

This manual provides detailed information on the following topics:

- Connecting the logic analyzer to your SUT (system under test)
- Setting up the logic analyzer to acquire data from your SUT
- Acquiring and viewing disassembled data

Manual Conventions

This manual uses the following conventions:

- The term "disassembler" refers to the software that disassembles bus cycles into instruction mnemonics and cycle types.
- The phrase "information on basic operations" refers to online help, an installation manual, or a basic operations of microprocessor supports user manual.
- The term "5202/03" refers to all supported variations of the MCF5202/03 microprocessor unless otherwise noted.
- In the information on basic operations, the term "XXX" or "P54C" used in field selections and file names must be replaced with 5202/03. This is the name of the microprocessor in field selections and file names you must use to operate the MCF5202/03 support.

- The term "logic analyzer" refers to the Tektronix logic analyzer for which this product was purchased.
- The term "SUT" (system under test) refers to the microprocessor-based system from which data will be acquired.
- A tilde (~) following a signal name indicates an active low signal.

Logic Analyzer Documentation

A description of other documentation available for each type of Tektronix logic analyzer is located in the corresponding module user manual. The manual set provides the information necessary to install, operate, maintain, and service the logic analyzer and associated products.

Contacting Tektronix

Product Support	For application-oriented questions about a Tektronix measure- ment product, call toll free in North America: 1-800-TEK-WIDE (1-800-835-9433 ext. 2400) 6:00 a.m. – 5:00 p.m. Pacific time
	Or, contact us by e-mail: tm_app_supp@tek.com
	For product support outside of North America, contact your local Tektronix distributor or sales office.
Service Support	Contact your local Tektronix distributor or sales office. Or, visit our web site for a listing of worldwide service locations.
	http://www.tek.com
For other information	In North America: 1-800-TEK-WIDE (1-800-835-9433) An operator will direct your call.
To write us	Tektronix, Inc. P.O. Box 1000 Wilsonville, OR 97070-1000

Getting Started

Getting Started

This chapter contains information on the TMS 220 microprocessor support, and information on connecting your logic analyzer to your system under test.

Support Description

The TMS 220 microprocessor support package disassembles data from systems that are based on the Motorola MCF5202 and MCF5203 microprocessors.

The TMS 220 supports the MCF5202 and MCF5203 microprocessors in a 100-pin TQFP package.

To use this support efficiently, you need to have the items listed in the information on basic operations as well as the following documents:

- Coldfire MCF5202/03 Specification, Motorola High Performance Embedded Systems Division, 1995.
- MCF5200 Family Programmer's Reference Manual, Motorola, 1995.
- MC68030 Enhanced 32-bit Microprocessor User's Manual, Motorola, 1989.
- MC68040 32-bit Microprocessor User's Manual, Motorola, 1989.

Logic Analyzer Software Compatibility

The label on the microprocessor support floppy disk states which version of logic analyzer software the support is compatible with.

Logic Analyzer Configuration

For use with a TLA 700 Series, the TMS 220 support requires a minimum of one 96-channel module.

For use with a DAS 9200 Series, the TMS 220 support requires a minimum of one 96-channel module.

Requirements and Restrictions

You should review the general requirements and restrictions of microprocessor supports in the information on basic operations as they pertain to your SUT.

You should also review electrical, environmental, and mechanical specifications in the *Specifications* chapter in this manual as they pertain to your system under test, as well as the following descriptions of other MCF5202/03 support requirements and restrictions.

System Clock Rate. The TMS 220 support can acquire data from the MCF5202/03 microprocessor at speeds of up to 33 MHz¹.

Hardware Reset. If a hardware reset occurs in your MCF5202/03 system during an acquisition, the disassembler may acquire an invalid sample.

Cache Invalidation. Correct disassembly is not guaranteed for microprocessor systems that run cache invalidations concurrent with burst cycles. Data for these cycles will not be disassembled and will be labeled as Cache Invalidation cycles.

Disabling the Internal Cache. To disassemble acquired data, you must disable the internal cache. Disabling the cache makes all instruction prefetches visible on the bus so they can be acquired and disassembled.

Big-Endian Byte Ordering. The disassembler always uses Big-Endian byte ordering for instruction disassembly. Big-Endian byte ordering is when the most significant data byte is located at the highest address.

Data Reads and Writes. The disassembler will not link data reads and writes with the instructions which cause them.

Connecting to a System Under Test With A Probe Adapter

To connect the logic analyzer to a SUT using the probe adapter and test clip, follow these steps:

1. Turn off power to your SUT.

It is not necessary to turn off the logic analyzer.

¹ Specification at time of printing. Contact your Tektronix sales representative for current information on the fastest devices supported.

CAUTION. Static discharge can damage the microprocessor, the probe adapter, the probes, or the module. To prevent static damage, handle all the above only in a static-free environment.

Always wear a grounding wrist strap or similar device while handling the microprocessor and probe adapter.

2. To discharge your stored static electricity, touch the ground connector located on the logic analyzer.

Connect The Test Clip To The Probe Adapter

- To connect the test clip to the probe adapter follow these steps:
- **3.** Line up pin 1 on the test clip, to pin 1 on the connector located on the bottom of the probe adapter circuit board, as shown in Figure 1–1.

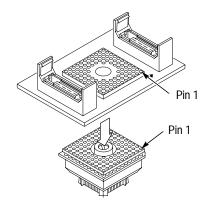


Figure 1–1: Connecting the test clip to the probe adapter

Connect the P6434 Probes To The Probe Adapter

To connect the P6434 probes to the probe adapter follow these steps:

CAUTION. Incorrect handling of the P6434 probe while connecting it to the probe adapter can result in damage to the probe or to the mating connector on the probe adapter. To avoid damaging the probe and probe adapter, always position the probe perpendicular to the mating connector and gently connect the probe.

- **4.** Refer to Figure 1–2, and connect the P6434 probes to the probe adapter. Match the channel groups and numbers on the probe labels to the corresponding connectors on the probe adapter.
- **5.** Position the probe tip perpendicular to the mating connector and gently connect the probe as shown in Figure 1–2.
- 6. When connected, push down the latch releases on the probe to set the latch.

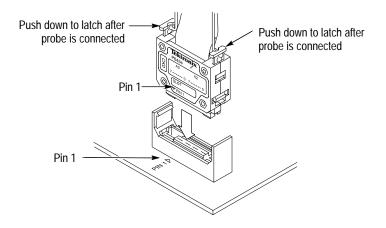
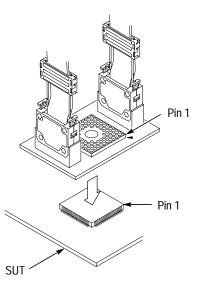


Figure 1–2: Connecting P6434 probes to the probe adapter

Connect The Probe Adapter Assembly To The System Under Test


To connect the probe adapter assembly (probe adapter and test clip) to your SUT follow these instructions:

- 7. Inspect the microcontroller on you SUT for bent or broken leads. Verify that the leads on the microcontroller are clean and free from dirt, dust, or any foreign material.
- **8.** Inspect the pins of the test clip for bent or broken contacts. Verify that the leads on the test clip are clean and free from dirt, dust or any foreign material.
- **9.** Verify that the locking devise on the test clip is not locked by turning the locking device with a small screwdriver counter-clockwise.

10. Place the probe adapter onto the SUT as shown in Figure 1-3.

CAUTION. Failure to correctly place the probe adapter onto the microprocessor might permanently damage all electrical components when power is applied. Center the clip on the microprocessor and apply an equal downward force on all four sides of the clip. It is important to keep the TQFP test clip parallel to the microprocessor to avoid damage to the SUT or TQFP test clip. Do not apply leverage to the probe adapter when installing or removing it.

CAUTION. The test clip was designed to be used on one and only one microprocessor. Because of the tight tolerances required for QFP test clip connectivity, the test clip that attaches to the microprocessor has a soft plastic collar that conforms to the unique shape of the target microprocessor.

To avoid faulty and unreliable connections, do not use the test clip on any other microprocessor then the one it was originally connected to.

11. Lock the test clip to the microcontroller by turning the locking knob clockwise with a small screwdriver.

CAUTION. The probe adapter board might slip off or slip to one side of the microprocessor because of the extra weight of the probes. This can damage the microprocessor and the SUT. To prevent this from occurring, stabilize the probe adapter by placing a non-conductive object (such as non-conductive foam) between the probe adapter and the SUT.

Removing the Probe Adapter from the SUT

To remove the probe adapter from the sut follow these steps:

- **1.** Unlock the test clip from the microcontroller by turning the locking knob counter-clockwise with a small screwdriver.
- 2. Gently lift and pull the probe adapter off of the microcontroller.

Connecting to a System Under Test Without A Probe Adapter

You can use the channel and clock probes and leadsets with a commercial test clip (or adapter) to make connections between the logic analyzer and your SUT. To connect probes to MCF5202/03 signals in the SUT using a test clip, follow these steps:

1. Turn off power to your SUT. It is not necessary to turn off power to the logic analyzer.

CAUTION. Static discharge can damage the microprocessor, the probes, or the module. To prevent static damage, handle all of the above only in a static-free environment.

Always wear a grounding wrist strap or similar device while handling the microprocessor.

- 2. To discharge your stored static electricity, touch the ground connector located on the back of the logic analyzer. If you are using a test clip, touch any of the ground pins on the clip to discharge stored static electricity from it.
- **3.** Table 1–1 through Table 1–8 shows the channel probes the MCF5202/03 signal pins on the test clip or in the SUT to connect to.

Use leadsets to connect at least one ground lead from each channel probe and the ground lead from each clock probe to ground pins on your test clip.

NOTE. Since the microprocessor multiplexes address A31-A0 and data D31-D0 (as the AD31-AD0 signals), the D3:7-0, D2:7-0, D1:7-0 and D0:7-0 channel probes do not need to be connected.

These channels are not considered to be extra channels, even though they are not connected. Do not use them to make connections to other signals in your SUT.

4. Align pin 1 or A1 of your test clip with the corresponding pin 1 or A1 of the MCF5202/03 microprocessor in your SUT and attach the clip.

Channel Assignments

The following channel assignment tables show the probe section and channel assignments, and the signal to which each channel connects. Channel assignments shown in Table 1–1 through Table 1–8 use the following conventions:

- All signals are required by the support unless indicated otherwise.
- Channels are shown starting with the most significant bit (MSB) descending to the least significant bit (LSB).
- Channel group assignments are for all modules unless otherwise noted.

By default, the Address group is displayed in hexadecimal.

Bit order	Section:channel	MCF5202/03 signal name
31	A3:7	AD31
30	A3:6	AD30
29	A3:5	AD29
28	A3:4	AD28
27	A3:3	AD27
26	A3:2	AD26
25	A3:1	AD25
24	A3:0	AD24
23	A2:7	AD23
22	A2:6	AD22
21	A2:5	AD21
20	A2:4	AD20
19	A2:3	AD19
18	A2:2	AD18
17	A2:1	AD17
16	A2:0	AD16
15	A1:7	AD15
14	A1:6	AD14
13	A1:5	AD13
12	A1:4	AD12
11	A1:3	AD11
10	A1:2	AD10
9	A1:1	AD9
8	A1:0	AD8

Table 1–1: Address group channel assignments

Bit order	Section:channel	MCF5202/03 signal name
7	A0:7	AD7
6	A0:6	AD6
5	A0:5	AD5
4	A0:4	AD4
3	A0:3	AD3
2	A0:2	AD2
1	A0:1	AD1
0	A0:0	AD0

Table 1–1: Address group channel assignments (cont.)

NOTE. Since the microprocessor multiplexes address A31-A0 and data D31-D0 (as the AD31-AD0 signals), the D3:7-0, D2:7-0, D1:7-0 and D0:7-0 channel probes do not need to be connected.

These channels are not considered to be extra channels, even though they are not connected. Do not use them to make connections to other signals in your SUT.

By default, the Data group is displayed in hexadecimal.

Bit order	Section:channel	MCF5202/03 signal name
31	D3:7	AD31
30	D3:6	AD30
29	D3:5	AD29
28	D3:4	AD28
27	D3:3	AD27
26	D3:2	AD26
25	D3:1	AD25
24	D3:0	AD24
23	D2:7	AD23
22	D2:6	AD22
21	D2:5	AD21
20	D2:4	AD20
19	D2:3	AD19
18	D2:2	AD18
17	D2:1	AD17
16	D2:0	AD16

Table 1–2: Data group channel assignments

Bit order	Section:channel	MCF5202/03 signal name
15	D1:7	AD15
14	D1:6	AD14
13	D1:5	AD13
12	D1:4	AD12
11	D1:3	AD11
10	D1:2	AD10
9	D1:1	AD9
8	D1:0	AD8
7	D0:7	AD7
6	D0:6	AD6
5	D0:5	AD5
4	D0:4	AD4
3	D0:3	AD3
2	D0:2	AD2
1	D0:1	AD1
0	D0:0	AD0

Table 1–2: Data group channel assignments (cont.)

By default, the Control group is displayed symbolically.

Table 1–3: Control group channel assignments

Bit order	Section:channel	MCF5202/03 signal name
8	C3:7	BD~
7	C3:6	TT1
6	C3:2	ТТО
5	C2:3	TS~
4	C3:3	АТМ
3	C2:5	ATM=
2	C3:1	DTIP~
1	C2:6	R/W~
0	C2:2	TEA~

By default, the DataSize group is displayed symbolically.

Table 1–4:	DataSize grou	p channel a	ssignments

Bit order	r Section:channel MCF5202/03 signal name		
4	C2:0	DA1~	
3	C2:1	DA0~	
2	C3:0	SIZ1	
1	C3:4	SIZO	
0	C3:5	TBI~	

By default, the Intr group is not visible.

Table 1–5: Intr group channel assignments

Bit order	Section:channel	MCF5202/03 signal name		
3	C1:5	AVEC~ †		
2	C1:6	IPL2~ †		
1	C1:2	IPL1~†		
0	C0:6	IPL0~†		

† Signal not required for disassembly.

By default, the Misc group is not visible.

Table 1–6: Misc group channel assignments

Bit order	Section:channel	MCF5202/03 signal name	
8	C2:7	CLK †	
7	C0:5	RST~ †	
6	C1:4	MTMOD2 †	
5	C1:3	MTMOD1 †	
4	C1:1	MTMOD0 †	
3	C1:7	HIZ~ †	
2	C1:0	AA~ †	
1	C0:4	BR~ †	
0	C2:4	BG~ †	

† Signal not required for disassembly.

By default, the Test group is not visible.

C0:7 C0:3	TCK †	
C0:3	PST3 +	
	PST3 †	
20:2	PST2†	
C0:1	PST1 †	
C0:0	PST0†	
	0:1	

Table 1–7: Test group channel assignments

† Signal not required for disassembly.

Table 1–8 lists the probe section and channel assignments for the clock probes. The clock probes are not part of any group.

Table 1–8: Clock channel assignments

Section:channel	MCF5202/03 signal name
CK:3	CLK=
CK:1	BD~=
CK:0	DTIP~=

CPU To Mictor Connections

To probe the microprocessor you will need to make connections between the CPU and the Mictor pins of the P6434 Mass Termination Probe. Refer to the P6434 Mass Termination Probe manual, Tektronix part number 070-9793-xx, for more information on mechanical specifications. Table 1–9 through Table 1–10 show the CPU pin to Mictor pin connections.

Mictor A pin	LA channel	MCF5202/03 signal name	Pin number
1	NC		
2	NC		
3	CLOCK:0		47
4	A3:7	AD31	34
5	A3:6	AD30	33
6	A3:5	AD29	30
7	A3:4	AD28	29
8	A3:3	AD27	28
9	A3:2	AD26	27
10	A3:1	AD25	26
11	A3:0	AD24	23
12	A2:7	AD23	22
13	A2:6	AD22	21
14	A2:5	AD21	20
15	A2:4	AD20	17
16	A2:3	AD19	16
17	A2:2	AD18	15
18	A2:1	AD17	14
19	A2:0	AD16	11
20	A0:0	AD0	89
21	A0:1	AD1	90
22	A0:2	AD2	91
23	A0:3	AD3	92
24	A0:4	AD4	95
25	A0:5	AD5	96
26	A0:6	AD6	97
27	A0:7	AD7	98
28	A1:0	AD8	1
29	A1:1	AD9	2
30	A1:2	AD10	3
31	A1:3	AD11	4
32	A1:4	AD12	5
33	A1:5	AD13	8
34	A1:6	AD14	9
35	A1:7	AD15	10
36	CLOCK:1	BD~=	49

Table 1–9: CPU to Mictor connections for Mictor A pins

Mictor A pin	LA channel	MCF5202/03 signal name	Pin number
37	NC		
38	NC		
39	GND	GND	
40	GND	GND	
41	GND	GND	
42	GND	GND	
43	GND	GND	

Table 1-9: CPU to Mictor connections for Mictor A pins (cont.)

Table 1–10: CPU to Mictor connections for Mictor C pins

Mictor C pin	LA channel	MCF5202/03 signal name	Pin number	
1	NC			
2	NC			
3	CLOCK:3	CLK=	87	
4	C3:7	BD~	49	
5	C3:6	TT1~	36	
6	C3:5	TBI~	54	
7	C3:4	SIZO	41	
8	C3:3	ATM	63	
9	C3:2	TTO~	35	
10	C3:1	DTIP~	47	
11	C3:0	SIZ1	42	
12	C2:7	CLK	87	
13	C2:6	R/W~	39	
14	C2:5	ATM=	63	
15	C2:4	BG~	51	
16	C2:3	TS~	40	
17	C2:2	TEA~	55	
18	C2:1	DA0~	43	
19	C2:0	DA1~	44	
20	C0:0	PST0	56	
21	C0:1	PST1	57	
22	C0:2	PST2	58	
23	C0:3	PST3	59	
24	C0:4	BR~	50	
25	C0:5	RST~	67	

Mictor C pin	LA channel	MCF5202/03 signal name	Pin number	
26	C0:6	IPL0~	64	
27	C0:7	ТСК	74	
28	C1:0	AA~	48	
29	C1:1	MTMOD0	76	
30	C1:2	IPL1~	65	
31	C1:3	MTMOD1	77	
32	C1:4	MTMOD2	78	
33	C1:5	AVEC~	79	
34	C1:6	IPL2~	66	
35	C1:7	HIZ~	75	
36	NC			
37	NC			
38	NC			
39	GND	GND		
40	GND	GND		
41	GND	GND		
42	GND	GND		
43	GND	GND		

Table 1–10: CPU to Mictor connections for Mictor C pins (cont.)

Operating Basics

Setting Up the Support

The information in this section is specific to the operations and functions of the TMS 220 MCF5202/03 support on any Tektronix logic analyzer for which it can be purchased. Information on basic operations describes general tasks and functions.

Before you acquire and disassemble data, you need to load the support and specify setups for clocking and triggering as described in the information on basic operations. The support provides default values for each of these setups, but you can change them as needed.

Channel Group Definitions

The software automatically defines channel groups for the support. The channel groups for the MCF5202/03 support are Address, Data, Control, DataSize, Intr, Misc, and Test. If you want to know which signal is in which group, refer to the channel assignment tables beginning on page 1–7.

How Data is Acquired

This part of the chapter explains how the module acquires MCF5202/03 signals using the TMS 220 software. This part also provides additional information on extra probe channels available for you to use for additional connections.

Clocking Options

The TMS 220 support offers a microprocessor-specific clocking mode for the MCF5202/03 microprocessor. This clocking mode is the default selection whenever you load the 5202/03 support.

A description of how cycles are sampled by the module using the support and probe adapter is found in the *Specifications* chapter.

Disassembly will not be correct with the Internal or External clocking modes. Information on basic operations describes how to use these clock selections for general purpose analysis.

The clocking option for the TMS 220 support is Alternate Bus Master Cycles. An alternate bus master cycle is defined as the cycle in which the MCF5202/03 microprocessor gives up the bus to an alternate device (a DMA device or another microprocessor). These types of cycles are acquired when you select Included.

Custom Clocking A special clocking program is loaded to the module every time you load the 5202/03 support. This special clocking is called Custom.

With Custom clocking, the module logs in signals from multiple groups of channels at different times as they become valid on the MCF5202/03 bus. The module then sends all the logged-in signals to the trigger machine and to the memory of the module for storage.

In Custom clocking, the module clocking state machine generates one master sample for each microprocessor bus cycle, no matter how many clock cycles are contained in the bus cycle.

Address Phase. The assertion of the TS~ signal indicates an Address phase (Ta). The clocking program checks whether the cycle is a potential bus master cycle or an Alternate Bus Master cycle. If Excluded is selected as the Alternate Bus Master Cycles clocking option, the disassembler waits for the potential bus maser cycle. Otherwise, when TS~ is deasserted while the DTIP~ and TEA~ signals are deasserted, then the A31-A0, BD~, ATM, CLK, and TS~ signals are acquired.

Data Phase. The assertion of the DTIP~ signal indicates a Data phase (Td). When the DA0~ or DA1~ signals are asserted, the D31-D0, TEA~, DA0~, DA1~, TT0, TT1, SIZ0, SIZ1, DTIP~, CLK, R/W~, ATM=, and BD~ signals are acquired.

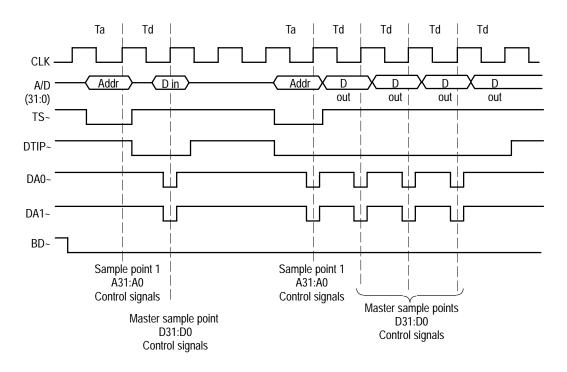


Figure 2–1: MCF5202/03 bus timing

Clocking Options	The clocking algorithm for the MCF5202/03 support has two variations:
	Alternate Bus Master Cycles Excluded and Alternate Bus Master Cycles
	Included.

Alternate Bus Master Cycles Excluded. Whenever the BD~ signal is high, no bus cycles are logged in. Only bus cycles initiated by the MCF5202/03 microprocessor (BD~ low) will be logged in.

Alternate Bus Master Cycles Included. All bus cycles, including Alternate Bus Master cycles, are logged in.

Symbols

The TMS 220 support supplies three symbol table files. Each file replaces specific channel group values with symbolic values when Symbolic is the radix for the channel group.

Symbol tables are generally not for use in timing or 5202/03_T support disassembly.

Table 2–1 lists the name, bit pattern, and meaning for the symbols in the file 5202/03_Ctrl, the Control channel group symbol table.

Table 2–1: Control group symbol table definitions

	Control group value			
Symbol	BD~ TT1 TT0	TS~ ATM ATM=	DTIP~ R/W~ TEA~	Description
S_DATA_RD	0 0 0	0 0 1	0 1 1	Supervisor mode Data Read; Normal Access
S_DATA_WR	0 0 0	0 0 1	0 0 1	Supervisor mode Data Write; Normal Access
S_FETCH	0 0 0	0 1 1	0 1 1	Supervisor mode Instruction Fetch; Normal Access
S_CPU_RD	0 1 1	0 0 1	0 1 1	Supervisor mode Data Read; CPU Access
S_CPU_WR	0 1 1	0 0 1	0 0 1	Supervisor mode Data Write; CPU Access
S_EMT_RD	0 1 0	0 0 1	0 1 1	Supervisor mode Data Read; Emulator Access
S_EMT_WR	0 1 0	0 0 1	0 0 1	Supervisor mode Data Write; Emulator Access
U_DATA_RD	0 0 0	0 0 0	0 1 1	User mode Data Read; Normal Access
U_DATA_WR	0 0 0	0 0 0	0 0 1	User mode Data Write; Normal Access

	Control group value			
Symbol	BD~ TT1 TT0	TS~ ATM ATM=	DTIP~ R/W~ TEA~	Description
U_FETCH	000	0 1 0	0 1 1	User mode Instruction Fetch; Normal Access
U_CPU_RD	0 1 1	0 0 0	0 1 1	User mode Data Read; CPU Access
U_CPU_WR	0 1 1	0 0 0	0 0 1	User mode Data Write; CPU Access
U_EMT_RD	0 1 0	0 0 0	0 1 1	User mode Data Read; Emulator Access
U_EMT_WR	0 1 0	0 0 0	0 0 1	User mode Data Write; Emulator Access
ALT_RD	1 X X	0 0 X	0 1 1	Alternate Master data read
ALT_WR	1 X X	0 0 X	0 0 1	Alternate Master data write
ALT_FETCH	1 X X	0 1 X	0 1 1	Alternate Master instruction fetch
BUS_ERROR	ХХХ	ххх	X X 0	Bue Error cycle
UNKNOWN	ХХХ	X X X	X X X	Unknown data cycle

Table 2–1: Control group symbol table definitions (cont.)

Table 2–2 lists the name, bit pattern, and meaning for the symbols in the file 5202/03_Size, the data transfer size channel group symbol table.

	DataSize group value		
Symbol	DA1~	DA0~ SIZ1 SIZ0 TBI~	Description
LWORD	0	0 0 0 X	Long Word Transfer
WORD	0	X 1 0 X	Word Transfer
BYTE	Х	X 0 1 X	Byte Transfer
4_LWD_BST	0	0 1 1 X	4-Long Word Burst Transfer
2_WD_BST	0	1 0 0 X	2-Word Burst Transfer
8_WD_BST	0	1 1 1 X	8-Word Burst Transfer
4_BTE_BST	1	0 0 0 X	4–Byte Burst Transfer
2_BTE_BST	1	0 1 0 X	2–Byte Burst Transfer
16_BTE_BST	1	0 1 1 X	16–Byte Burst Transfer

Table 2–2: DataSize group symbol table definitions

Table 2–3 lists the name, bit pattern, and meaning for the symbols in the file 5202/03_Intr, the Interrupt channel group symbol table.

	Intr group value	
	AVEC~ IPL2~ IPL1~	
Symbol	IPL0~	Description
IPL_1	X 1 1 0	Level 1 interrupt request
IPL_2	X 1 0 1	Level 2 interrupt request
IPL_3	X 1 0 0	Level 3 interrupt request
IPL_4	X 0 1 1	Level 4 interrupt request
IPL_5	X 0 1 0	Level 5 interrupt request
IPL_6	X 0 0 1	Level 6 interrupt request
IPL_7	X 0 0 0	Level 7 interrupt request
NO_INTR	X 1 1 1	No interrupt

Table 2–3: Intr group symbol table definitions

Information on basic operations describes how to use symbolic values for triggering and for displaying other channel groups symbolically, such as the Address channel group.

Acquiring and Viewing Disassembled Data

Acquiring Data

Once you load the 5202/03 support, choose a clocking mode, and specify the trigger, you are ready to acquire and disassemble data.

If you have any problems acquiring data, refer to information on basic operations in your online help or *Appendix A: Error Messages and Disassembly Problems* in the basic operations user manual.

Viewing Disassembled Data

You can view disassembled data in four display formats: Hardware, Software, Control Flow, and Subroutine. The information on basic operations describes how to select the disassembly display formats.

NOTE. Selections in the Disassembly property page (the Disassembly Format Definition overlay) must be set correctly for your acquired data to be disassembled correctly. Refer to Changing How Data is Displayed on page 2–11.

The default display format shows the Address, Data, and Control channel group values for each sample of acquired data.

The disassembler displays special characters and strings in the instruction mnemonics to indicate significant events. Table 2–4 lists these special characters and strings, and gives a definition of what they represent.

Table 2–4: Meaning of special characters in the display

Character or string displayed	Description
>> On the TLA 700 m On the DAS 9200	The instruction was manually marked as a program fetch
****	Indicates there is insufficient data available for complete disassembly of the instruction: the number of asterisks indicates the width of the data that is unavailable. Each two asterisks represent one byte.
#	Indicates an immediate value
t	Indicates the number shown is in decimal, such as #12t
(S) or (U)	Indicates the mode in which the microprocessor is operating, Supervisor or User

Character or string displayed	Description
A-LINE OPCODE	Displayed for an A-Line trap instruction
F-LINE OPCODE	Displayed for an F-Line trap instruction

Table 2-4: Meaning of special characters in the display (cont.)

Hardware Display Format In Hardware display format, the disassembler displays certain cycle type labels in parentheses. Table 2–5 lists these cycle type labels and gives a definition of the cycle they represent. Reads to interrupt and exception vectors will be labeled with the vector name.

Table 2–5: Cycle type definitions

Cycle type	Description
(BUS ERROR)	Bus cycle error
(ALT FETCH)	ALT microprocessor fetch cycle
(ALT READ)	ALT microprocessor read cycle
(ALT WRITE)	ALT microprocessor write cycle
(CPU SUP READ)	Read from CPU space: Supervisor access
(CPU SUP WRITE)	Write to CPU space: Supervisor access
(CPU USR READ)	Read from CPU space: User access
(CPU USR WRITE)	Write to CPU space: User access
(DATA SUP READ)	Read cycle: Supervisor access
(DATA SUP WRITE)	Write cycle: Supervisor access
(DATA USR READ)	Read cycle: User access
(DATA USR WRITE)	Write cycle: User access
(EMUL SUP READ)	Read cycle: Emul Access in Supervisor mode
(EMUL SUP WRITE)	Write cycle: Emul Access in Supervisor mode
(EMUL USR READ)	Read cycle: Emul Access in User mode
(EMUL USR WRITE)	Write cycle: Emul Access in User mode
(UNKNOWN)	The combination of control bits is unexpected and/or unrecognized
(PREFETCH IGNORED)§	Instruction Burst Fill to the cache that is not executed
(CACHE BURST FILL)§	Data burst fill to the cache
(INTERRUPT ACK LEVEL: n)§	Interrupt acknowledge
(EXTENSION)§	A fetch cycle computed to be an opcode extension

Cycle type Description	
(FLUSH)§	A fetch cycle computed to be an opcode flush

§ Computed cycle types.

Figure 2–2 shows	s an example	of the H	Hardware	display.

	1	2	3	4		5	
	•	•		•			
	Sample	Address	Data	Mnemonic		Control	>
-	90	1F0001DE	01E2	(FLUSH)	(S)	01B	>
	91	1F0001EC	48C3	EXT.L D3	(S)	01B	>
	92	1F0001EE	49C0	EXTB.L DO	(S)	01B	>
	93	1F0001F0	4840	SWAP DO	(S)	01B	>
	94	1F0001F2	284F	MOVEA.L A7,A4	(S)	01B	>
	95	1F0001F4	4850	PEA (AO)	(S)	01B	>
	96	1F0001F6	4A00	TST.B DO	(S)	01B	>
	97	1F0001F8	4A10	TST.B (AO)	(S)	01B	>
	98	1F0001FA	4E56	LINK.W A6,#FFFC	(S)	01B	>
	99	1F0001FC	FFFC	(EXTENSION)	(S)	01B	>
	100	1F0001FE	4E5E	UNLK A6	(S)	01B	>
	101	16FFFFFC	1600	(DATA SUP WRITE)	(S)	009	>
	102	16FFFFFE	4FFF	(DATA SUP WRITE)	(S)	009	>
	103	16004FFF	00	(DATA SUP READ)	(S)	00B	>
	104	1F000200	4E50	LINK.W AO,#FFF8	(S)	01B	>
	105	1F000202	FFF8	(EXTENSION)	(S)	01B	>
	106	1F000204	4E58	UNLK AO	(S)	01B	>
	107	1F000206	4E71	NOP	(S)	01B	>
	108	1F000208	48D0	MOVEM.L D013467/A12356,(A0)	(S)	01B	>
	109	1F00020A	6EDB	(EXTENSION)	(S)	01B	>
	110	1F00020C	47D0	LEA (AO),A3	(S)	01B	>
	111	1F00020E	207C	MOVEA.L #16005000,A0	(S)	01B	>

Figure 2–2: Hardware display format

- **1** Sample Column. Lists the memory locations for the acquired data.
- **2** Address Group. Lists data from channels connected to the MCF5202/03 address bus.
- **3** Data Group. Lists data from channels connected to the MCF5202/03 data bus.

4 Mnemonics Column. Lists the disassembled instructions and cycle types.

5 Control Group. Lists data from channels connected to MCF5202/03 microprocessor control signals (shown symbolically).

Software Display Format The Software display format shows only the first fetch of executed instructions. Flushed cycles and extensions are not shown, even though they are part of the executed instruction. Read extensions will be used to disassemble the instruction, but will not be displayed as a separate cycle in the Software display format. Data reads and writes are not displayed.

The Software display format also shows the following cycles:

- CPU Space Bus Error cycle
- Bus Error cycle
- Special cycles: Breakpoint Ack, Int Ack, access register reads and writes
- Emulated instructions which cause exceptions
- Reset vector
- Reads from the interrupt table that appear due to servicing exceptions, provided the Vector Base Register field matches your SUT
- Illegal instructions
- (UNKNOWN) cycle types: the disassembler does not recognize the Control group value

Control Flow Display
FormatThe Control Flow display format shows only the first fetch of instructions that
change the flow of control.

The Control Flow display format also shows the following cycles:

- CPU Space Bus Error cycle
- Bus Error cycle
- Special cycles: Breakpoint Ack, Int Ack, access register reads and writes
- Emulated instructions which cause exceptions
- Reset vector
- Reads from the interrupt table that appear due to servicing exceptions, provided the Vector Base Register field matches your SUT
- Illegal instructions
- (UNKNOWN) cycle types: the disassembler does not recognize the Control group value

Instructions that generate a change in the flow of control in the MCF5202/03 microprocessor are as follows:

BRA	JSR	STOP	BSR
RTE	TRAP	JMP	RTS

The instruction that might generate a change in the flow of control in the MCF5202/03 microprocessor is Bcc.

Subroutine Display
FormatThe Subroutine display format shows only the first fetch of subroutine call and
return instructions. It will display conditional subroutine calls if they are
considered to be taken.

The Subroutine display format also shows the following cycles:

- CPU Space Bus Error cycle
- Bus Error cycle
- Special cycles: Breakpoint Ack, Int Ack, access register reads and writes
- Emulated instructions which cause exceptions
- Reset vector
- Reads from the interrupt table that appear due to servicing exceptions, provided the Vector Base Register field matches your SUT
- Illegal instructions
- (UNKNOWN) cycle types: the disassembler does not recognize the Control group value

Instructions that generate a subroutine call or a return in the MCF5202/03 microprocessor are as follows:

BSR	RTE	STOP
JSR	RTS	TRAP

Changing How Data is Displayed

There are common fields and features that allow you to further modify displayed data to suit your needs. You can make common and optional display selections in the Disassembly property page (the Disassembly Format Definition overlay).

You can make selections unique to the MCF5202/03 support to do the following tasks:

- Change how data is displayed across all display formats
- Change the interpretation of disassembled cycles
- Display exception vectors

There are no optional fields for this support package. Refer to the information on basic operations for descriptions of common fields.

Optional Display
SelectionsYou can make optional selections for disassembled data. In addition to the
common selections (described in the information on basic operations), you can
change the displayed data in the following ways:

- Select the microprocessor from which to acquire data
- Specify the starting address of the vector base register
- Specify the size of the vector base register

The MCF5202/03 microprocessor support product has three additional fields: Processor Select, Vector Base Register, and Vector Table Size.

Processor Select. You can select which microprocessor from which to acquire data, the MCF5202 or the MCF5203.

Vector Base Register. You can specify the starting address of the vector base register in hexadecimal, by increments of two. The default starting address is 0x00000000.

Vector Table Size. You can specify the size of the interrupt table in hexadecimal. The default size is 0x400. The minimum size allowed is 8. The size must be divisible by 4.

Marking Cycles The disassembler has a Mark Opcode function that allows you to change the interpretation of a cycle type. Using this function, you can select a cycle and change it to one of the following cycle types:

- Opcode (the first word of an instruction)
- Extension (a subsequent word of an instruction)
- Flush (an opcode or extension that is fetched but not executed)
- Anything (any valid opcode, extension or flush)

	Opcode Opcode Flush Flush Extens Extens Extens	e sion sion	Anything Opcode Flush Flush Opcode Extension Opcode Flush	
	Undo mark			
	Mark selec	tions for	an 8- and 16	-bit bus are as follows:
	Opcode Extens Flush			
	Undo n	nark		
Displaying Exception Vectors	You can rel Register fie offset addre of the base specify a th These field Definition Table 2–6 1 Table 2–6: I	locate th eld. The ess. Ente address nree-digi ls are loc overlay) lists the l	e table by ent Vector Base I er an eight-dig of the except t hexadecima ated in the D MCF5202/03 n vectors	ception vectors. ering the starting address in the Vector Base Register field provides the disassembler with the git hexadecimal value corresponding to the offset ion table. The Vector Table Size field lets you l size for the table. isassembly property page (Disassembly Format exception vectors.
	Exception number		n in table decimal)	Displayed exception name
	0		00	(INITIAL STACK POINTER)
	1		04	(INITIAL PROGRAM COUNTER)
	2		08	(ACCESS ERROR VECTOR)
	3		0C	(ADDRESS ERROR VECTOR)
	4		10	(ILLEGAL INSTRUCTION VECTOR)
	5-7		14-01C	(RESERVED VECTOR #14H-#1CH)
	8		20	(PRIV VIOLATION VECTOR)
	9		24	(TRACE VECTOR)
	10		28	(UNIMPLEMENTED LINE-A OPCODE)

Mark selections for a 32-bit bus are as follows:

Exception number	n Location in table (in hexadecimal) Displayed exception name	
11	02C	(UNIMPLEMENTED LINE-F OPCODE)
12	030	(DEBUG INTERRUPT VECTOR)
13	034	(RESERVED VECTOR #34H)
14	038	(FORMAT ERROR VECTOR)
15	03C	(UNINIT INTERRUPT VECTOR)
16-23	040-05C (RESERVED VECTOR #40H-#5CH)	
24	060	(SPURIOUS INTERRUPT VECTOR)
25-31	064-07C	(ILP 1-7 AUTOVECTOR)
32-47	080-08C (TRAP #0t-#15t VECTOR)	
48-63	0C0-0FC	(RESERVED VECTOR #C0-#FC)
64-255	100-3FC	(USER INT VECTOR #64t-#255t)

Table 2-6: Exception vectors (cont.)

Viewing an Example of Disassembled Data

A demonstration system file (or demonstration reference memory) is provided so you can see an example of how your MCF5202/03 microprocessor bus cycles and instruction mnemonics look when they are disassembled. Viewing the system file is not a requirement for preparing the module for use and you can view it without connecting the logic analyzer to your SUT.

Specifications

Specifications

Probe Adapter Description

The probe adapter is nonintrusive hardware that allows the logic analyzer to acquire data from a microprocessor in its own operating environment with little or no effect on that system. Information on basic operations contains a figure showing the logic analyzer connected to a typical probe adapter. Refer to that figure while reading the following description.

The probe adapter consists of a circuit board and a socket for a MCF5202/03 microprocessor. The probe adapter connects to the microprocessor in the SUT. Signals from the microprocessor-based system flow from the probe adapter to the channel groups and through the probe signal leads to the module.

The probe adapter accommodates the Motorola MCF5202/03 microprocessor in a 100-pin TQFP package.

Specification Tables

These specifications are for a probe adapter connected between a compatible Tektronix logic analyzer and a SUT. Table 3–1 lists the electrical requirements the SUT must produce for the support to acquire correct data. Table 3–2 lists the environmental specifications.

Figure 3–1 shows the dimensions of the probe adapter. Figure 3–2 shows the dimensions of the test clip.

Characteristics	Requirements
SUT clock	
Maximum clock rate	33 MHz
Minimum setup time required	
TLA 700	2.5 ns
DAS 9200	5 ns
Minimum hold time required	
TLA 700	0 ns
DAS 9200	0 ns

Table 3–1: Electrical s	pecifications
-------------------------	---------------

Characteristics	Requirements		
	Specifica	tion	
Measured typical SUT signal loading	AC load	DC load	
AD0-AD31	16 pF + 1 podlet	1 podlet	
CLK	11.5 pF + 2 podlets	2 podlets	
DTIP~	18.4 pF + 2 podlets	2 podlets	
BD~	21.4 pF + 2 podlets	2 podlets	
ATM	10.5 pF + 2 podlets	2 podlets	
PST0, PST1, PST2, PST3, BR~, RST~, IPL0~, IPL1~, IPL2~, TCK, AA~, MTMOD0, MTMOD1, MTMOD2, AVEC~, HIZ~	10 pF + 1 podlet	1 podlet	
Loading		·	
TLA 700 podlet load	20 K $\!\Omega$ in parallel with 2	pF	
TLA 700 Mictor load	20 K Ω in parallel with 2 pF		
DAS 9200 podlet load	100 K Ω in parallel with 10 pF		
DAS 9200 Mictor load	100 K Ω in parallel with \hat{a}	12 pF	

Table 3–1: Electrical specifications (cont.)
--

Table 3–2: Environmenta	I specifications*
-------------------------	-------------------

Characteristic	Description
Temperature	
Maximum operating	+50° C (+122° F) †
Minimum operating	0° C (+32° F)
Non-operating	-55° C to +75° C (-67° to +167° F)
Humidity	10 to 95% relative humidity
Altitude	
Operating	4.5 km (15,000 ft) maximum
Non-operating	15 km (50,000 ft) maximum
Electrostatic immunity	The probe adapter is static sensitive

* Designed to meet Tektronix standard 062-2847-00 class 5.

[†] Not to exceed MCF5202/03 microprocessor thermal considerations. Forced air cooling might be required across the CPU.

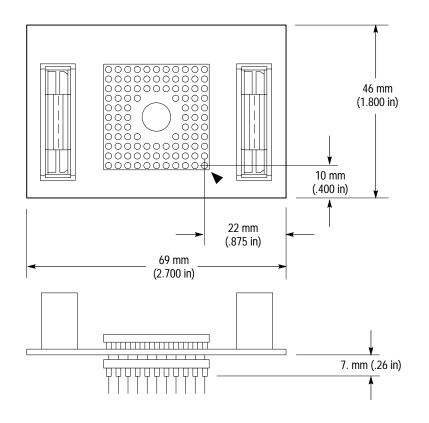


Figure 3–1: Dimensions of the probe adapter

Figure 3-2: Dimensions of the test clip

Specifications

WARNING

The following servicing instructions are for use only by qualified personnel. To avoid injury, do not perform any servicing other than that stated in the operating instructions unless you are qualified to do so. Refer to all Safety Summaries before performing any service.

Maintenance

Maintenance

Replacing Signal Leads

Information on basic operations describes how to replace signal leads (individual channel and clock probes).

Maintenance

Replaceable Electrical Parts

Replaceable Electrical Parts

This chapter contains a list of the replaceable electrical components for the TMS 220 MCF5202/03 microprocessor support.

Parts Ordering Information

Replacement parts are available through your local Tektronix field office or representative.

Changes to Tektronix products are sometimes made to accommodate improved components as they become available and to give you the benefit of the latest improvements. Therefore, when ordering parts, it is important to include the following information in your order:

- Part number
- Instrument type or model number
- Instrument serial number
- Instrument modification number, if applicable

If you order a part that has been replaced with a different or improved part, your local Tektronix field office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

Using the Replaceable Electrical Parts List

The tabular information in the Replaceable Electrical Parts List is arranged for quick retrieval. Understanding the structure and features of the list will help you find all of the information you need for ordering replacement parts. The following table describes each column of the electrical parts list.

Parts list column descriptions

Column	Column name	Description
1	Component number	The component number appears on diagrams and circuit board illustrations, located in the diagrams section. Assembly numbers are clearly marked on each diagram and circuit board illustration in the <i>Diagrams</i> section, and on the mechanical exploded views in the <i>Replaceable Mechanical Parts</i> list section. The component number is obtained by adding the assembly number prefix to the circuit number (see Component Number illustration following this table).
		The electrical parts list is arranged by assemblies in numerical sequence (A1, with its subassemblies and parts, precedes A2, with its subassemblies and parts).
		Chassis-mounted parts have no assembly number prefix, and they are located at the end of the electrical parts list.
2	Tektronix part number	Use this part number when ordering replacement parts from Tektronix.
3 and 4	Serial number	Column three indicates the serial number at which the part was first effective. Column four indicates the serial number at which the part was discontinued. No entry indicates the part is good for all serial numbers.
5	Name & description	An item name is separated from the description by a colon (:). Because of space limitations, an item name may sometimes appear as incomplete. Use the U.S. Federal Catalog handbook H6-1 for further item name identification.
6	Mfr. code	This indicates the code number of the actual manufacturer of the part.
7	Mfr. part number	This indicates the actual manufacturer's or vendor's part number.

Abbreviations Abbreviations conform to American National Standard ANSI Y1.1–1972.

Component Number	Component number				
	A23A2R1234	A23	A2	R1234	
	Assembly number Subassembly number Circuit number (optional)				
	Read: Resist	or 1234 (of s	Subasser	nbly 2) of As	ssembly 23
List of Assemblies	A list of assemblies is located at the beginning of the electrical parts list. The assemblies are listed in numerical order. When a part's complete component number is known, this list will identify the assembly in which the part is located.				
Chassis Parts	Chassis-mounted parts and cable assemblies are located at the end of the Replaceable Electrical Parts List.				
Mfr. Code to Manufacturer Cross Index					shows codes, names, and addresses of ted in the parts list.

Manufacturers cross index

Mfr.			
code	Manufacturer	Address	City, state, zip code
05276	ITT POMONA ELECTRONICS	1500 E NINTH ST	POMONA, CA 91766-3835
63058	BERG ELECTRONICS INC.	MCKENZIE SOCKET DIV 910 PAGE AVE	FREMONT, CA 94538-7340
80009	TEKTRONIX INC	14150 SW KARL BRAUN DR PO BOX 500	BEAVERTON, OR 97077-0001

Replaceable electrical parts list

Component number	Tektronix part number	Serial no. effective	Serial no. discont'd	Name & description	Mfr. code	Mfr. part number
-	010-0609-00			ADATPER,PROBE:MCF5202/03,PGA-100 SOCKETED,TMS220 11	80009	010-0609-00
-	103–0411–00			ADAPTER,TQFP:TEST CLIP,100 PIN TQFP,0.50 MM LEAD PITCH,MCF5202/03,100 POS,	05276	MODEL 6150
-	136-1316-00			SOCKET,PGA:PCB,FEMALE,STR,100 POS,11 X 11,0.173 H X 0.183 TAIL,G/G,PAT 114,OPEN CENTER,SHO	63058	PGA100H101B1-1149 F
-	671-4151-00			CIRCUIT BD ASSY:PGA-100 BD,SOCKETED,389-2425-00 WIRED,TMS220 OPT 11	80009	671-4151-00

Replaceable Mechanical Parts

Replaceable Mechanical Parts

This chapter contains a list of the replaceable mechanical components for the TMS 220 MCF5202/03 microprocessor support.

Parts Ordering Information

Replacement parts are available through your local Tektronix field office or representative.

Changes to Tektronix products are sometimes made to accommodate improved components as they become available and to give you the benefit of the latest improvements. Therefore, when ordering parts, it is important to include the following information in your order:

- Part number
- Instrument type or model number
- Instrument serial number
- Instrument modification number, if applicable

If you order a part that has been replaced with a different or improved part, your local Tektronix field office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

Using the Replaceable Mechanical Parts List

The tabular information in the Replaceable Mechanical Parts List is arranged for quick retrieval. Understanding the structure and features of the list will help you find all of the information you need for ordering replacement parts. The following table describes the content of each column in the parts list.

Parts list column descriptions

Column	Column name	Description
1	Figure & index number	Items in this section are referenced by figure and index numbers to the exploded view illustrations that follow.
2	Tektronix part number	Use this part number when ordering replacement parts from Tektronix.
3 and 4	Serial number	Column three indicates the serial number at which the part was first effective. Column four indicates the serial number at which the part was discontinued. No entries indicates the part is good for all serial numbers.
5	Qty	This indicates the quantity of parts used.
6	Name & description	An item name is separated from the description by a colon (:). Because of space limitations, an item name may sometimes appear as incomplete. Use the U.S. Federal Catalog handbook H6-1 for further item name identification.
7	Mfr. code	This indicates the code of the actual manufacturer of the part.
8	Mfr. part number	This indicates the actual manufacturer's or vendor's part number.

Abbreviations	Abbreviations conform to American National Standard ANSI Y1.1–1972.
Chassis Parts	Chassis-mounted parts and cable assemblies are located at the end of the Replaceable Electrical Parts List.
Mfr. Code to Manufacturer Cross Index	The table titled Manufacturers Cross Index shows codes, names, and addresses of manufacturers or vendors of components listed in the parts list.

Manufacturers cross index

Mfr. code	Manufacturer	Address	City, state, zip code
05276	ITT POMONA ELECTRONICS	1500 E NINTH ST	POMONA, CA 91766-3835
63058	BERG ELECTRONICS INC.	MCKENZIE SOCKET DIV 910 PAGE AVE	FREMONT, CA 94538–7340
80009	TEKTRONIX INC	14150 SW KARL BRAUN DR PO BOX 500	BEAVERTON, OR 97077-0001

Replaceable parts list

Fig. & index	Tektronix	Serial no.	Serial no.				
number	part number	effective	discont'd	Qty	Name & description	Mfr. code	Mfr. part number
					STANDARD ACCESSORIES		
1–0	671-4151-00			1	CIRCUIT BD ASSY: PGA-100 BD, SOCKETED, 389-2425-00 WIRED, TMS220 OPT 11	80009	671–4151–00
-1	010-0609-00			1	ADATPER, PROBE: MCF5202/03, PGA–100 SOCKETED, TMS220 11	80009	010-0609-00
-2	131–6134–01			3	CONN, RCPT: SMD, MICTOR, PCB, STR, 38 POS, FEMALE, 0.025 CTR, 0.240 H, W/0.108 PCB HOLD DOWN	00779	767054–1
-3	105–1089–00			3	LATCH ASSY: LATCH HOUSING ASSY, VERTICAL MOUNT, 0.48 H X 1.24 L, W/PCB SINGLE CLIP, P6434	60381	105–1089–00
-4	136–1316–00			1	SOCKET, PGA: PCB, FEMALE, STR, 100 POS, 11 X 11, 0.173 H X 0.183 TAIL, G/G, PAT 114, OPEN CENTER, SHO	63058	PGA100H101B1-1149 F
-5	103–0411–00			1	ADAPTER, TQFP: TEST CLIP, 100 PIN TQFP, 0.50 MM LEAD PITCH, MCF5202/03, 100 POS	05276	MODEL 6150
	070–9803–00			1	MANUAL, TECH: INSTRUCTION, MICROPROCESSOR SUPPORT, PKG INSTALLATION, TLA700 SERIES, LOGIC ANALYZER	TK2548	070–9803–00
	070-9842-00			1	MANUAL, TECH: INSTRUCTION MANUAL, MCF5202/03, TMS220	TK2548	070–9842–00
					OPTIONAL ACCESSORIES		
	070-9802-00			1	MANUAL, TECH:BASIC OPS MICRO SUP ON DAS/TLA 500 SERIES LOGIC ANALYZERS	80009	070-9802-00

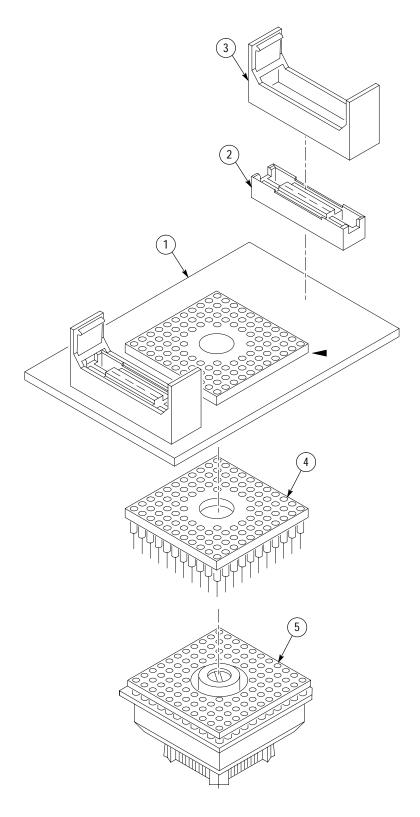


Figure 1: MCF5202/03 probe adapter exploded view

Index

Index

Numbers

520X, definition, ix

A

about this manual set, ix acquiring data, 2–7 Address group channel assignments, 1–7 display column, 2–9 Alternate Bus Master Cycles, clocking options, 2–3 application, logic analyzer configuration, 1–1

В

basic operations, where to find information, ix Big-Endian byte ordering, 1–2 bus cycles, displayed cycle types, 2–8 bus timing, 2–2 byte ordering, 1–2

С

cache invalidation, 1-2 channel assignments Address group, 1-7 clocks, 1-11 Control group, 1-9 Data group, 1-8 DataSize group, 1–10 Intr group, 1–10 Misc group, 1-10 Test group, 1–11 channel group definitions, 2-1 clock channel assignments, 1-11 clock rate, 1-2 clocking, Custom, 2-1 clocking options, 2–3 Alternate Bus Master Cycles, 2-3 component locator diagrams, 5 connections CPU to Mictor, 1-11 P6434 probes. 1–4 probe adapter to SUT, QFP, 1-2 without probe adapter, 1-6 channel probes, 1-6

Control Flow display format, 2–10 Control group channel assignments, 1–9 display column, 2–9 symbol table, 2–3 CPU to Mictor connections, 1–11 custom clocking, 2–1, 2–2 Address Phase, 2–2 Data Phase, 2–2 cycle types, 2–8

D

data acquiring, 2-7 disassembly formats Control Flow, 2-10 Hardware, 2-8 Software, 2-10 Subroutine, 2-11 how it is acquired, 2-1 data display, changing, 2-11 Data group channel assignments, 1-8 display column, 2-9 data reads and writes, 1-2 DataSize group channel assignments, 1-10 symbol table, 2-4 demonstration file, 2-14 diagrams and circuit board illustrations, 5-6 dimensions, probe adapter, 3-3 disassembled data cycle type definitions, 2-8viewing, 2–7 viewing an example, 2-14 disassembler definition, ix logic analyzer configuration, 1-1 setup, 2–1 Disassembly Format Definition overlay, 2-12 Disassembly property page, 2-12 display formats Control Flow, 2-10 Hardware, 2–8 Software, 2-10 special characters, 2-7 Subroutine, 2-11

E

electrical specifications, 3–1 environmental specifications, 3–2 exception vectors, 2–13

Η

Hardware display format, 2–8 cycle type definitions, 2–8

information on basic operations, definition, ix inspection and cleaning microcontroller, 1–4 QFP test clip, 1–4 Internal cache, 1–2 Intr group channel assignments, 1–10 symbol table, 2–5

L

logic analyzer configuration for disassembler, 1–1 configuration for the application, 1–1 with a DAS 9200 series, 1–1 with a TLA 700 series, 1–1 definition, x software compatibility, 1–1

Μ

manual conventions, ix how to use the set, ix Mark Cycle function, 2–12 Mark Opcode function, 2–12 marking cycles, definition of, 2–12 Mictor to CPU connections, 1–11 Misc group, channel assignments, 1–10 Mnemonics display column, 2–9

Ρ

P54C, definition, ix P6434 probes, connecting. *See* connections package, TQFP, 1–1 probe adapter clearance, dimensions, 3–3 connecting the P6434 probes, 1–3 hardware description, 3–1 how to unlock test clip, 1–5 inspection and cleaning, 1–4 not using one, 1–6 removing, 1–5 Processor Select field, 2–12

Q

QFP test clip, 1–3 attaching to microcontroller, 1–5 attaching to probe adapter, 1–3 inspection and cleaning, 1–4

R

reference material, 1–1 reference memory, 2–14 Reset, SUT hardware, 1–2 restrictions, 1–1

S

setups, disassembler, 2-1 signals, active low sign, x Software display format, 2-10 special characters displayed, 2-7 specifications, 3-1 channel assignments, 1-7 electrical, 3-1 environmental, 3–2 mechanical (dimensions), 3-3 static discharge caution statment, 1-3 how to disapate, 1-3 Subroutine display format, 2-11 support setup, 2-1 supported package style, 1-1 SUT definition, x probe adapter connection procedure, 1-2 SUT hardware Reset, 1-2 symbol table Control channel group, 2–3 DataSize channel group, 2-4 Intr channel group, 2–5 system file, demonstration, 2-14

system under test, definition, x

Т

terminology, ix test clip connecting to probe adapter, 1–3 how to lock, 1–5 how to unlock, 1–5 inspection and cleaning, 1–4 installing, 1–3 QFP, 1–3 removing, 1–5 Test group, channel assignments, 1–11 TQFP package, 1–1

V

Vector Base Register field, 2–12 Vector Table Size field, 2–12 viewing disassembled data, 2–7

Х

XXX, definition, ix

Index